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The subject of the paper are Green’s functions for the stress intensity factors of modes I, II and III. Green’s 
functions are defined as a solution to the problem of an elastic, transversely isotropic solid with a penny-shaped 
or an external crack under general axisymmetric loadings acting along a circumference on the plane parallel to 
the crack plane. Exact solutions are presented in a closed form for the stress intensity factors under each type of 
axisymmetric ring forces as fundamental solutions. Numerical examples are employed and conclusions which can 
be utilized in engineering practice are formulated. 
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1. Introduction 
 

The basic solutions, related among other to multifield materials, are Green’s functions, which were 
proposed by George Green first in 1828. There are two different analysis processes for the solutions in the 
science literature. One has focused on displacement, electric potential and magnetic potential, constructing 
the equilibrium equations. The second has emphasized on equilibrium equations of stresses, electric 
displacements and magnetic inductions and compatibility equations for strains. There are Stroh’s formalism 
(1958) and Lekhnitskii’s approach (1963), for example. On the other hand, there are three commonly used 
methods in analyzing boundary effects the theoretical solution, the numerical solution and the experiment. 
But, appropriate Green’s functions for the stress intensity factors, not appear up till now since this problem is 
a specific task. 
 It is easily understood that the point force continuously distributed in radial (Fig.2) and axial (Fig.4) 
direction along a ring around the axis of symmetry gives the fundamental solutions for tension problems and 
those distributed in circumferential direction (Fig.3) give the fundamental solutions for torsion problems. 
The problems of the cracks treated in the present study are solved by using three types of axisymmetric ring 
forces as fundamental solutions. Modes I, II and III stress intensity factors derived in this paper are in terms 
of elementary functions and need no further elaboration. The results presented for general cases are new, 
some of those relating to special cases of isotropic or transversely isotropic solids with crack surface 
tractions are known (see Murakami (1987), Rogowski (1986), for example). Livieri nad Segala (2014) 
obtained in analytical form the stress intensity factor of mode I using of the Oore – Burns weight function 
(1980). Recently, Green’s function for an uncracked piezoelectric medium was presented by Chung (2014). 
 Nowacki et al. (2001; 2002) obtained exact solutions for a piezoelectric layer – substrate structure in 
the form of Fourier integrals with detailed discussions on the convergence. Ting (2007; 2008) constructed 
Green’s function for an anisotropic piezoelectric half – space bonded to a thin piezoelectric layer subjected 
to a generalized line force and a generalized line dislocation. The Stroh formalism is adapted and the 
solutions are explicitly given in elaborations by Chung and Nowacki et al. 
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 This article presents in a closed form new influence functions of a unit ring loadings on the 
displacements and stresses for internal and external cracks and three boundary value problems of fracture 
mechanics for a transversely isotropic medium. All these results are presented in terms of elementary 
functions. It is well known that Green’s functions play a major role in solving boundary value problems in 
integrals of different areas of mathematical physics, including fracture mechanics (see monographs by 
Rogowski 2014a; 2014b). 
 

2. Basic equations 
 

 In this study we use cylindrical coordinates and denote them by  , ,r z  or (xi, i=1, 2, 3). Let a 

penny-shaped crack or an external crack be located in the plane z = 0 of a homogeneous and transversely 
isotropic elastic solid. 
 The penny-shaped crack occupies the region 0 r a   (z = 0) and the external crack occupies the 
region ar  (z = 0). Both sides of the cracks are stress free. The half- space z 0  is subjected to 
axisymmetric body forces 
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distributed along the circumference of a circle (r = b, z = h) in the interior of the solid, where    is a Dirac 

delta function and , ,1 2 3F F F  are a radial force, a torsional force and an axial force, respectively, as shown in 
Figs 2, 3 and 4. 
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Fig.1. A transversely isotropic elastic solid with a penny-shaped or external crack. 
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Fig.2. A radial force acting along a circle. 
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Fig.3. A torsional force acting along a circle. 
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Fig.4. An axial force acting along a circle. 
 

 We consider axisymmetric deformations of an elastic transversely isotropic solid. That is, the 
displacements and stresses treated here are independent of angle   in cylindrical coordinates  , ,r z . We 

restrict our attention to the determination of singular stresses at the crack tip, since these are the quantities of 
greatest physical interest. Due to the symmetry (Fig.5) or antisymmetry (Fig.6) of the problem, it can be 
reduced to a mixed boundary value problem for half - space with the following mixed boundary conditions: 
 
- for a penny-shaped crack  :r 0 r a   

 
  , , , , ,z zu 0 r a z 0 0 r a z 0       , (2.2a) 
 
  , , , , ,r zru 0 r a z 0 0 r a z 0       , (2.2b) 
 
  , , , , ,zu 0 r a z 0 0 r a z 0        , (2.2c) 
 
- for an external crack  :r r a  

 
  , , , , ,z zu 0 r a z 0 0 r a z 0       , (2.3a) 
 
  , , , , ,r zru 0 r a z 0 0 r a z 0       , (2.3b) 
 
  , , , , ,zu 0 r a z 0 0 r a z 0        , (2.3c) 
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for symmetric, antisymmetric and antisymmetric torsional loading, respectively. The symmetric torsional 
loading yields z 0   for ,r 0 z 0  . 
 Suitable elasticity solutions for a cracked solid that represent unit ring loading are obtained using the 
theory of Hankel transforms (see, Sneddon (1972), for example). A brief derivation of the main equations is 
presented in the Appendix. On the basis of those fundamental solutions it can be shown that the displacement 
and stress fields associated with the action of the concentrated axisymmetric ring forces and appropriate to 
solve the mixed boundary conditions (2.2 a, b, c) or (2.3 a, b, c) on the plane where the crack exists are as 
follows: 
 

(i) For axial and radial symmetric forces as shown in Figs 4, 2 and 5 
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(ii) For axial and radial antisymmetric forces as shown in Figs 4, 2 and 6 
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(iii) For antisymmetric torsional force as shown in Figs 2 and 6 
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 In the solutions (2.4), (2.5) and (2.6) the following notation is used: vJ  denotes the Bessel function 

of the first kind of order ; the known functions 0H , 1H , 2H  and 3H  are presented in terms of exponentials 
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as shown in Eqs (A11) in the Appendix, zG  denotes the shear modulus of the material in the z-direction and 

the material parameters , ,i 0s C   and 1  are given in the Appendix by Eqs (A9) and (A10). 
 Within the context of linear elastic fracture mechanics, the stress intensity factors are defined as 
 

   
 
 
 

,

lim ,

,

I z

II zr
r a

III z

K r 0

K 2 r a r 0

K r 0




   
        
      

,  (2.7) 

 

   
 
 
 

,

lim ,

,

I z

II zr
r a

III z

K r 0

K 2 a r r 0

K r 0




   
        
      

, (2.8) 

 
for a penny-shaped crack and an external crack, respectively. 
 IIIIII KKK ,,  are mode I, II, III stress intensity factors (Kanninen and Popelar, 1985), respectively, 
corresponding to the cases (i), (ii) and (iii) of loading, respecively. 
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Fig.5. Symmetric loadings. 
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Fig.6. Antisymmetric loadings. 
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 In the assumed axially symmetric problem, with respect to the z – axis, the torsional problem is 
separated and may be solved separately, as here. But in the three – dimensional case we also have another 
antisymmetric problem (the superposition), so that in general case the IIK  and IIIK  will be coupled. The 
antisymmetric problem solution will be published separately. 
 
3. Mode I loading 
 
3.1. The penny-shaped crack 
 
 The boundary conditions (2.2a) and the solutions (2.4) yield 
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 The dual integral Eqs (3.1), (3.2) are converted to the Abel integral equation by means of the 
following integral representation for  A   
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  , (3.3) 

 

with the assumption that  g x 0  as x 0 . 

 This representation of  A   identically satisfies Eq.(3.1). Substitution of  A   into Eq.(3.2) leads 

to the following Abel integral equation for an auxiliary function  xg   
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 Applying Abel’s solution method to invert the left-hand side of Eq.(3.4), the solution for  xg  is 
obtained 
 

               sin sin .3 0 0 i 0 1 1 1 i

0 0

2
g x 1 J b x H s h d 1 J b x H s h d

  
           

   
   (3.5) 
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 The improper integrals in Eq.(3.5) are calculated analytically (see Appendix, Eqs (A1) and (A2)). 
Consequently, the auxiliary function  g x  is obtained explicitly in terms of the oblate spheroidal 

coordinates i  and i  (see Appendix) as 
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2 2 2 2 2 2 2
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 (3.6) 

 
where the material parameters , ,1 2s s k  and 0  are given in the Appendix. 
 The singular part of the axial stress is given by the formula 
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4 r a
   

  
. (3.7) 

 
 Consequently, from Eqs (2.7)1, (3.6) and (3.7), the stress intensity factor at the crack tip is obtained 
explicitly in terms of the oblate spheroidal coordinates i  and i  (the values of i  and i  for x a , see the 
Appendix) as 
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3.2. An external crack 

 
 The boundary conditions (2.3a) with the use of Eq.(2.4) yield 
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 The dual integral Eqs (3.9), (3.10) are converted to the Abel integral equation, by means of the 
following integral representation for  A   
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  . (3.11) 

 
 In this representation the auxiliary function  xf  is assumed to be continuous over the interval  

[0, a]. This representation of  A   identically satisfies Eq.(3.10). Substitution of  A   into Eq.(3.9) leads to 

the following Abel integral equation 
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 Applying Abel’s solution method, the solution for  xf  is obtained 
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 Substituting the integrals (A3) and (A4) (see Appendix) gives the final solution for  xf  
 

  

 

   
 

3 2 1
2 2 2 2

2 2 1 1

2 2
2 1 1 1 2 20 1

2 2 2 2
2 1 1 1 2 2

1 k2 1
f x

k 1 x

ks 1 s 11 1
1

b ks s

   
               

                        

 (3.14) 

 
where the oblate spheroidal coordinates ,i i   are defined in the Appendix. 

 The stress  ,z r 0  for ar   is given by 
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 Consequently, from Eqs (3.14), (3.15) and (2.8)1, the stress intensity factor of mode I can be obtained 
in terms of the coordinates ,i i   such that 
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where ,i i   are obtained from ,i i   for x a  (see the Appendix). 

 
4. Mode II loading 
 
4.1. The penny-shaped crack 
 
 Substituting the formulae (2.5) into the boundary conditions (2.2b) the following dual integral 
equations for antisymmetric loading cases are obtained 
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with the assumption that  /1 2x h x 0  as x 0  , satisfies identically Eq.(4.1), while Eq.(4.2) is converted 

to the Abel integral equation 
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 The solution of this equation is 
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     Using the integrals (A3)  (A6) (see the Appendix) gives the final solution for the auxiliary function  xh  
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 The singular part of the shear stress is given by 
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       Defining the stress intensity factor of mode II as in Eq.(2.8)2, and substituting  ah  from Eq.(4.6) yields 
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where ,i i   are the values of ,i i   for x = a (see the Appendix). 
 
4.2. An external crack 
 
 Substituting the formulae (2.5) into the boundary conditions (2.3b) the following dual integral 
equations for antisymmetric loading cases are obtained 
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 The integral representation for  B   
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satisfies identically Eq.(4.10), while Eq.(4.9) is converted to the Abel integral equation 
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 The solution of this equation is 
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 Substituting the analytical formulae of the improper integrals (Eqs (A1) and (A2) in the Appendix) 
we get 
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 The stress  ,zr r 0  is 
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 The mode II stress intensity factor of an external crack is obtained as 
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5. Mode III loading 
 
5.1. The penny-shaped crack 

 
 The boundary conditions (2.2c) with the use of Eq.(2.6) yield the following dual integral equations 
of axisymmetric torsion of a penny-shaped crack 
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 Applying Abel’s solution method to invert the left-hand side of Eq.(5.4) and then substituting the 
integrals (A4) and (A6) from the Appendix give the final solution for  x  
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where 3  and 3  are defined in the Appendix. 

 The singular part of the stress z  is given by 
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 The solution (5.5) and Eq.(5.6) give 
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where 3 , 3  are the values of ,3 3   for x = a (see the Appendix). 
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5.2. An external crack 
 
 The boundary conditions (2.3c) and the solutions (2.6) yield 
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0 0
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          , (5.8) 
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 These equations are formally similar to Eqs (4.9), (4.10). 
Thus, the integral representation for  C   
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gives the final solution for an auxiliary function  x   
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where ,3 3   are the oblate spheroidal coordinates associated with the material parameter 3s  (see the 

Appendix). 
 The stress  ,z r 0  is 
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 The stress intensity factor of mode III for an external crack is given by the formula 
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where 3 , 3  are obtained from ,3 3   for x = a. 

 
6. Application 
 
 Exact solutions have been presented for the stress intensity factors of mode I, II and III at the tips of 
a penny – shaped crack and an external crack under axial, radial and torsional loadings. These solutions are 
obtained explicitly in terms of elementary functions. For any axisymmetrical distribution of those loadings of 
the medium with internal or external cracks the integration and / or simple superposition of the obtained 
results give the possibility of obtaining exact solutions for the stress intensity factors. 
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Example 1 
 
 We now proceed to consider some specific cases of loadings, when the axial loading 31 2  and the 

radial loading 11 2  are applied on the planes hz   in an annular region crb   symmetrically with 

respect to the z 0  plane (see Fig.7). 
 

           
 

Fig.7. Axial 31  and radial 11  loadings which generate the mode I stress intensity factor IK . 
 
 Then 
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 From Eqs (3.8) and (6.1) we obtain for a penny – shaped crack ar 0  
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 For an external crack ar   we have 
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 In special cases IK  assumes the values 
- for a penny – shaped crack 
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 (6.5) 

 
 When the axial loading is in plane of a crack but outside of a crack surface, then IK  are zero. This 
coefficient exists for radial loading applied outside a crack surface in its plane. Note that if the axial loading 
is applied in an infinite region r 0  on the plane hz  , IK  is independent on h , while for radial loadings 

this coefficient depends on h . 
 
Example 2 
 
 Consider the case where 31 2  and 11 2  is applied on the plane z h   in the annular region 

antisymmetrically with respect to the z 0  plane (see Fig.8). 
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Fig.8. Axial 31  and radial 11  loadings which generate the mode II stress intensity factor IIK . 
 
 Then for a penny – shaped crack  0 r a   we obtain from Eq.(4.8) 
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 For the external crack we have Eq.(4.16) 
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Example 3 
 
 For antisymmetric torsional loading 21 2  acting on the planes z h   (Fig.9), we obtain 
 

                                             
 

Fig.9. Torsional loadings which generate the mode III stress intensity factor IIIK . 
 
- for a penny – shaped crack Eq.(5.7) 
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- for an external crack we have Eq.(5.13) 
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7. Numerical results 

 
 To investigate the dependence of the influence functions of a unit annular ring loadings on the stress 
intensity factors of mode I, II and III numerical results for the graphite – epoxy composite transversely 
isotropic material will be presented below. The material parameters are: .11c 0 82 , .12c 0 26 , .13c 0 32 , 

.33c 8 68  and .44c 0 41  in units of 104MPa.  

 Figure 10 shows the variations of *
IK  but calculated for 31 1  and 11 1  . It shows that the radial 

loading acts in the opposite direction to the positive direction of the r  – axis. Figure 11 shows the variations 

of non – dimensional  * 2
I I 3K K 1 a 2   for 31 1  and 11 1 . A comparison of Figs 10 and 11, for a 

penny – shaped crack, shows that if 11 1   then the SIF increases. The radial loadings in the opposite 
direction to the r – axis give additional crack opening displacement (“buckling effect” of a penny – shaped 
crack). 
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        Fig.10. The variation of *
IK  with ah  for                Fig.11. The variation of *

IK  with ah  for 

         different ab  and 31 1  and 11 1  .                       different ab  and 31 1  and 11 1 . 
 

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0 10 20 30 40 50

h/a

KI*, b=a, c finite

c/a=1

c/a=4

c/a=3

c/a=2

          

-1,00

-0,80

-0,60

-0,40

-0,20

0,00

0,0 10,0 20,0 30,0 40,0 50,0

c/a

KI*, h=0, b>=a, c>=a

b/a=1

b/a=5

b/a=4

b/a=2

 
 

      Fig.12. The variation of *
IK  with ah  for                   Fig.13. The variation of *

IK  with ac  for 

       different ac  and 31 1  and 11 1  .                          different ab  and 11 1 . 
 

 Figure 12 shows the variation of *
IK  with ah  for dissimilar annulus dimensions ( ab  , c changes) 

for 31 1  and 11 1  . Figure 13 shows *
IK  for h 0 , ab , ac  change for 31 1  (no influence) and 

11 1 . In the case ( 0h ) *
IK  (related to 11 ) depends only on 11 1   (“buckling effect”). Both Figs 12 and 

13 are for a penny – shaped crack. 
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 Figure 14 shows *
IK  versus ac  and ab  for the buckling force 11 1  . Figure 15 shows the 

variation of *
IIK  for a penny – shaped crack. 
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     Fig.14. The variation of *
IK  with ac  and                 Fig.15. The variation of *

IIK  with ah  for 

      ab  for 11 1  .                                                         different ac  if af   and 31 1 ,  

                                                                            11 1  (penny – shaped crack). 
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Fig.16. The variation of *
IIK  with ah  for               Fig.17. The variation of *

IIIK  with ah  for ab   

 different ac  and ab  (an external                         and different ac  (penny – shaped crack). 
 crack). 
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 Figure 16 shows the variation of *
IIK  for an external crack. In Figs 15 and 16 extreme values appear 

for .h a 2 5 . Figure 17 shows  * 2
III III 2K K 1 a 2   versus ah  for ab   and different ac , for a 

penny – shaped crack. Figure 18 shows *
IIIK  versus ah  for ab   and different ac , for an external crack. 

In the case of torsional loading the extreme value of *
IIIK  appears for .h a 4 0  in the case of a penny – 

shaped crack. 
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Fig.18. The variation of with ah  for ab   and different ac  (an external crack). 
 
8. Conclusions 

 
1. Getting exact Green’s functions for SIF is essential in applications because of their accuracy and 

computational efficiency. 
2. The possibility of obtaining exact solutions in terms of elementary functions based on Green’s functions 

constructed in this paper has not been exhausted as presented in Sections: Application and Numerical 
Results and three examples. We can also display a variety of other similar examples, including examples 
of discontinuous fields with prescribed loading sources, which can serve as a good test base for various 
numerical methods for solving boundary value problems of fracture mechanics. 

 
Appendix 
 
 The following integrals are used to evaluate the auxiliary functions which appear in this paper 
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 The oblate spheroidal coordinates ,i i   are related to xhsb i ,,  by the equations 

 

     ,2 2 2 2
i i i i ib x 1 1 s h x         (A7) 

 
where i1 1     and i 0  . The surface i 0   and i 0  are respectively the interior and exterior of the 

circle ,b x h 0  ; here therefore 
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The coordinates ,i i   for x = a are denoted by ,i i  . 

 Three sets of oblate spheroidal coordinates ,i i   (i = 1, 2, 3) are associated with three material 

parameters is (i = 1, 2, 3) which are given by equations 
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1 2 33 44 11 33 13 13 44 11 44

2
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 (A9) 

 
where ijc  are five elastic constants of a transversely isotropic solid and rG , and zG are the shear moduli 

along the r-axis and z-axis, respectively; the z-axis is the axis of elastic symmetry of the material. 
 The remaining material parameters are given as 
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 Expressions for functions  j iH s h  that appear in the analysis are as follows 
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Each of these functions tend to unity as h tends to zero. 
Let us consider a brief derivation of the main equations by means of Hankel transforms. 
 It is assumed that the geometry of the medium and the applied internal loads are axisymmetric. 
Therefore, one may easily separate the torsion component of the problem in which , ru   and z  are the 
only non zero displacement and stress components, for which 
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   ,z r 0 0        or       ,u r 0 0  .  (A15) 

 
 The first condition in Eqs (A15) corresponds to symmetric and the other one to antisymmetric 
torsion loading with respect to the z 0  plane. 
 The solution of Eq.(A13) could be obtained through the application of Hankel integral transform. 
Then  ,3 r z  is found to be 
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 The conditions (A14) and (A15) yield 
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where n 0  and n 1  correspond to symmetric and antisymmetric loading conditions. In deriving the 
results (A17) the following integral representation of the right-hand side of Eqs (A14) is used 
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 The displacement and stresses (A1) are obtained in the form 
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where  sgn 0z z   equals unity if 0z z  and minus unity if 0z z . 

 The remaining problem under the given internal axial and radial loads in the absence of the cracks 
may be solved using the displacement functions and the conditions of symmetry, continuity and 
discontinuity, which for axisymmetric problems may be written (Rogowski, 1975) 
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or 
 
     , , ,r zzu r 0 0 r 0 0   . (A28) 

 
 The potentials  ,i r z  are found to be 
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 The conditions (A25), (A26) and (A27) or (A28) yield 
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for symmetric  n 0  and antisymmetric  n 1  loading with respect to z 0  plane. 

 The displacements (A22) and stresses (A23) are 
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The stresses rr  and   may be similarly expressed. 
 For two half-spaces problem with cracks the displacement and stress field are obtained in the forms 
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for symmetric loading, i.e.,  ,rz r 0 0  , and 
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for antisymmetric loading, i.e.,  ,zz r 0 0  , and 
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for antisymmetric torsion. 
 The solution for each half-space may be obtained as the superposition of two fields obtained above. 
 
Nomenclature 
 
 a  – radius of a penny – shaped crack or radius of bonded region for an external crack 
 ijc  – elastic constants of a transversely isotropic solid 

 h – the z  – coordinate of applied ring forces 
 , ,I II IIIK K K  – stress intensity factor of mode I, mode II and mode III, respectively 

 k – the material parameter of transversely isotropic material 
 r – radial coordinate 
 s – the eigenvalue of transversely isotropic body 
 ru  – radial displacement 

 u  – circumferential displacement 

 zu  – axial displacement 

 z – axial coordinate 
 11  – the resultant of radial ring force 

 21  – the resultant of circumferential ring force 

 31  – the resultant of axial ring force 

   – Hankel parameter 
   – oblate spheroid coordinate 
   – oblate spheroid coordinate 
   – stress 
   – circumferential coordinate 
   – material parameter 
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